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What is White-box and what’s it used
for-

* Whitebox cryptography is a software-based method to protect
cryptographic keys and algorithm from being exposed or tampered
with in an untrusted environment. This is usually done by mixing key

addition with S-boxes. It then further uses techniques such as:
[ Mathematical ]

[ Obfuscation J [ encryption J Transformation

* White-box cryptography is useful for securing open devices, such as
smartphones, that are vulnerable to analysis or rooting.
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Intro to AES algorithm
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Intro to AES algorithm
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Intro to AES algorithm

[ Key }—4{ Key Schedule } Addround Key

| This is just XOR’ing the Plaintext or input with the
: Ke
Y.
[ Plaintext H Addround Key J
/ , Inputs | Outputs
( N
SubBytes I X Y Z
_J
7 0|0 0
The _
First | ShiftRows 0 1 1
Nine v 1 0 1
Round Mixcolumns
s s | | 0
v
Addround Key |«




Classification: Public

Intro to AES algorithm

[ Key }———{ Key Schedule } SubBytes

| In this each byte is substituted by another byte. It’s
: performed using a lookup table called the S-box.
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Intro to AES algorithm
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It is just as it sounds, Each row is shifted a particular
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Intro to AES algorithm
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This step is basically a matrix multiplication. Each
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Side-channel attacks

{DCA ] {DFA J
merential Computational Analysis: \ ﬁifferential Fault Analysis: \

* Itis software derived version of the * It comes from a hardware
differential Power Analysis (DPA) background, and it is based in the
attack. induction of faults during the

* The statistical analysis of the data execution of a cryptographic
managed in memory or registers algorithms.
during obtained when executing a * The statistical analysis of an original
cryptographic primitive with different trace together with traces obtained
inputs might correlate to and reveal using the same input and injecting
information about the secret key faults during its execution can give the
material used by the algorithm. secret key of the software White-Box

\ / KCryptography implementation. /
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Differential fault injection attack

 Where to inject the faults?

* Finding out where to inject faults requires understanding of the code/binary
and understanding of how Cryptographic algorithm works.

 This can however also be done via automation and there are some nice tools
for it. This is one of the tools used for the purpose of attempting to automate
the DFA attacks.

* https://github.com/SideChannelMarvels/JeanGrey



https://github.com/SideChannelMarvels/JeanGrey
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Differential fault injection attack
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DFA on White-box AES

Whitebox implementation

link:

https://whibox.io/contests

/2019/cadidate/26.c
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DFA on White-box AES

Whitebox implementation
link:
https://whibox.io/contests

Fault Injection
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DFA on White-box AES

Whitebox implementation

link:

https://whibox.io/contests

/2019/cadidate/26.c
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Key scheduling

After the 10t round key is achieved,
following tool can be used to get a hold
of the original key:

* https://github.com/SideChanne

IMarvels/Stark

This is because the key scheduling
algorithm can be inversed to get the
original key.

/
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DFA on White-box AES

Following is the a demo on getting the 10t round key: Faulty ciphertext after injecting on 8t

round.

import phoenixAES

with open("r8faults", "w") as f: ///7 ‘\\\

f.write("2eb8c27618e2974894cb657db757b6c4\n"
f.write("6384175e737f687139af567701b6d7eb\n"

)
) . . .
f.write("12f4c3877e1ffb8ccOfdd4bb2ed4ffas\n") Using the tool PhoenixAES in python

phoenixAES.convert_r8faults_file("r8faults", "r9faults") script, | was able to get ahold of the 10t
phoenixAES.crack_file("r9faults")

key.

o %

Last round key #N found:

6C1A6812D68A011011C9A2DODIAB2C75
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DFA on White-box AES

Following is the a demo on getting the 10t round key:

import phoenixAES

with open("r8faults", "w") as f:
f.write("2eb8c27618e2974894cb657db757b6c4\n")
f.write("6384175e737f687139af567701b6d7eb\n")
f.write("12f4c3877e1ffb8ccofdd4bb2ed4ffas\n")|

phoenixAES.Eonvert_r8faults_file("r8faults", "ro9faults")

phoenixAES.crack_file("r9faults")

Using the tool
stark(https://github.com/SideChannelM

arvels/Stark) on the 10t key, | was able
to obtain the original key.

o

~

)

PS C:\Users\adw8\Documents\Stark> .\aes_keyschedule.exe 6C1A6812D68A011011C9A2DBDI9AB2C75 10

: 9D797E44BOCFB850B21DD8406FEESAC4E
(@1: BDESBS51FF3427D4F415FASGF2EB19FCBC
2: 5B5834166F7FEGE27A85B818919C4CAC

: 8171A597EEQE4575948BF5656517B89(C9

: 792778F(C97293D8963A2C8ECB6B57125

: BCB8447932BAD7A1A280FB2F62EBAC3D3
: 6BAA21A243875BB86B@8E94E45B22A9D
: 1FAF7FCCS5C4824745740CD3A72F2ETAT
: 16DB238C4A9307F87DD3CAC208F212D65
: FOO36EFABASGE962C743A3CBCE628EAS
: 6C1AG812D68AC11011C9A2DBDSAB2CT75
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DFA on White-box AES

inpattype: | Tex Using a aes decryption tool online we can
::Z:; Xt [2EB8C27618E2974894CB657DB757B6C4 see that, the keys found is valid.
y

O Plaintext ©® Hex Autodetect: ON | OFF / \

Function: AES . Site used:
AES Encryption — Easily

Mode: ECB (electronic codebook) v encrypt or decrypt
Key:

9d797E44B9ICF850B21DD8406FEE3ACAE strings or files (online-
domain-tools.com)

(hex)

O Plaintext ® Hex

- Encrypt - Uecrypt ug K /

Decrypted text:

0000@0@0‘|48 65 6c 6C 6f 77 6f 72 6C 64 6f 6f 6f 6f 6f 6f Helloworldoooooo

[Download as a binary file] [?] Inactive


http://aes.online-domain-tools.com/
http://aes.online-domain-tools.com/
http://aes.online-domain-tools.com/
http://aes.online-domain-tools.com/
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Great Reads

* https://blog.quarkslab.com/differential-fault-analysis-on-white-box-
aes-implementations.html

* https://eprint.iacr.org/2015/753
* https://www.geeksforgeeks.org/advanced-encryption-standard-aes/

* https://braincoke.fr/blog/2020/08/the-aes-key-schedule-
explained/#rotword

* An introduction to white-box cryptography - Security Boulevard
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