Classification: Public

Whitebox Cryptography

By Sanyog Chhetri

Classification: Public

Content

* What is White-box and what’s it used for?
* Intro to AES algorithm

* Side-channel attacks

* Differential fault injection attack

* DFA on White-box AES

* Great Reads

Classification: Public

What is White-box and what’s it used
for-

* Whitebox cryptography is a software-based method to protect
cryptographic keys and algorithm from being exposed or tampered
with in an untrusted environment. This is usually done by mixing key

addition with S-boxes. It then further uses techniques such as:
[Mathematical]

[Obfuscation J [encryption J Transformation

* White-box cryptography is useful for securing open devices, such as
smartphones, that are vulnerable to analysis or rooting.

Classification: Public

Intro to AES algorithm

[Key

J—

Ve

Key Schedule }

{ Plaintext

J—

Eg
“48656¢c6c6f77..."

v

Addround Key J

-

~

SubBytes
) !
The .
First | ShiftRows
Nine) v
Round Mixcolumns
S \\§
v

Addround Key

N

.

SubBytes

v

ShiftRows

v

Addround Key

/

Eg
“2eb8c27618e2...”

[

Ciphertext J

Classification: Public

Intro to AES algorithm

[Key H Key Schedule }

{ Plaintext H Addround Key }

v

-

A

s

~

SubBytes
v
The _
First ShiftRows
Nine v
d 4
Roun Mixcolumns
S
v

Addround Key

A

Key Schedule
New keys are derived for each round from the

original. The key is separated into 4 word bytes.

RotWord

Classification: Public

Intro to AES algorithm

[Key }—4{ Key Schedule } Addround Key

| This is just XOR’ing the Plaintext or input with the
: Ke
Y.
[Plaintext H Addround Key J
/ , Inputs | Outputs
(N
SubBytes I X Y Z
_J
7 0|0 0
The _
First | ShiftRows 0 1 1
Nine v 1 0 1
Round Mixcolumns
s s | | 0
v
Addround Key |«

Classification: Public

Intro to AES algorithm

[Key }———{ Key Schedule } SubBytes

| In this each byte is substituted by another byte. It’s
: performed using a lookup table called the S-box.
[Plaintext H Addround Key } This substitution is done in a way that a byte is
never substituted by itself and also not substituted
/ . N by another byte which is a compliment of the
current byte.
SubBytes DI E— y
_ /
e ¢ R State before State after substitution
T h e) substitution operation operation
. 35[89] 10 r a7 Te
First L ShiftRows) A! D3EB | 8F 0A z:f?,; (Q
. 89N8 | 673 A7 Bel 85
Nine P ¢ N 45\ 6D 13\ S=Box :E E; f: ljr;
Round . 2[3 5'6’7ys'9/.({(' D[E|F|
Mixcolumns 63 [7C| 77 | 7B| F2|6B | 6F | C3 | 3001 | 67 | 2B| FE|D7/AB| 76
S 2|c9|7D|FA| 59147 peTAD D4 A2 |AF|9C A4 72 CO]
93(26/36(3 7/CC|34 |AS|ES|F1|71|D8|3
¢ C7|23 C‘3‘ 9{/;: ‘;;\ 07 I\Z 80 E; E}; 27 B; :’i
2C IA%(GE SAIA0|S52|3B|D6|B3|29 | E3 2F 84 |
Addround Key |«
\ & _J

Classification: Public

Intro to AES algorithm

H Key Schedule }*

[Key

v

[Plaintext H Addround Key }

-~

The
First
Nine
Round

A

A

()

SubBytes
_ _J
4 ¢)\

ShiftRows
. ¢ J
N

Mixcolumns
v
Addround Key

. _J

ShiftRows

It is just as it sounds, Each row is shifted a particular

number of times.

50,0 | So.1 | So.2 | So.3
S0 | St | Sz | 513
S2.0 | 521 [52,2523
S30 | 531 | 532 | 533

g

S0.0 | Soa | So.2 | So3
I—m St | Su2 | i3 | Sio
m S22 | S23 | S2,0 | S2u
m S33 | S3.0 | Saa | 532

Classification: Public

Intro to AES algorithm

|

Key

v

}—4{ Key Schedule }

[Plaintext H Addround Key }

-

A 4

SubBytes

v
The _
First ShiftRows
Nine) v
Round Mixcolumns
S

-

Addround Key

A

Mixcolumns
This step is basically a matrix multiplication. Each
column is multiplied with a specific matrix and thus
the position of each byte in the column is changed
as a result.

sp.| [02 03 01 017[s,.
s | |01 02 03 01(s,
s, | o1 o1 02 03]]s,.
si.| 103 01 o1 02]s,,

MixColumns ()

o i
S0.0 Soc { S0.3 5\0? i 50,2 | So.3
S1.0 Sie S1.2 | S1.3 $10 S1e 512 | S13
$2.0 O [ss.s S23 S50 S’zc s,
3ol S3.c 152 | S33 $3.0 S;f S;.

Classification: Public

Side-channel attacks

{DCA] {DFA J
merential Computational Analysis: \ ﬁifferential Fault Analysis: \

* Itis software derived version of the * It comes from a hardware
differential Power Analysis (DPA) background, and it is based in the
attack. induction of faults during the

* The statistical analysis of the data execution of a cryptographic
managed in memory or registers algorithms.
during obtained when executing a * The statistical analysis of an original
cryptographic primitive with different trace together with traces obtained
inputs might correlate to and reveal using the same input and injecting
information about the secret key faults during its execution can give the
material used by the algorithm. secret key of the software White-Box

\ / KCryptography implementation. /

Classification: Public

Differential fault injection attack

 Where to inject the faults?

* Finding out where to inject faults requires understanding of the code/binary
and understanding of how Cryptographic algorithm works.

 This can however also be done via automation and there are some nice tools
for it. This is one of the tools used for the purpose of attempting to automate
the DFA attacks.

* https://github.com/SideChannelMarvels/JeanGrey

https://github.com/SideChannelMarvels/JeanGrey

Classification: Public

Differential fault injection attack

Tools for retrieving
7 7 N %
7% a7 a7 2 _’V/A the last round key:
f ——/% * https://github.com
Eighth Eighth - _.@ /SideChannelMarv
e
Round Round 7 els/leanGrey/tree/
Byte Sub Shift pE % [
Row - Z master/phoenixAE
ighth Ninth Round Byte Sub S
Round % 2
Mix Column F
| —’%
l?
2 —-///A
Fj
—.y/d
F
4 - /A
Ninth Round Shift Row
7
Al A2 .»‘\3 A4 AI AZ .»\3 ./\4 3|.l]:4 l:3 3|:2 F l_—/A
.
A |A . 7
6| 7| As‘ A % | 1] s Fi| Fu|3F42F //%‘FZ
- B - 7
A ?
An 12| A Am Ay Am Al P2 Fi|3F4|2F4 K //A‘ F3
A |A |A |A A A A |a e [w] 7
6] 13| 14 s 13 14 Vs e 3F,)|2F| F3| K F 4 7

Tenth Round Shift Row Tenth Round Byte Sub Ninth Round Mix Column

https://github.com/SideChannelMarvels/JeanGrey/tree/master/phoenixAES
https://github.com/SideChannelMarvels/JeanGrey/tree/master/phoenixAES
https://github.com/SideChannelMarvels/JeanGrey/tree/master/phoenixAES
https://github.com/SideChannelMarvels/JeanGrey/tree/master/phoenixAES
https://github.com/SideChannelMarvels/JeanGrey/tree/master/phoenixAES

Classification: Public

DFA on White-box AES

Whitebox implementation

link:

https://whibox.io/contests

/2019/cadidate/26.c

Fault Injection

-

SubBytes

—
The _
Ninth ShiftRows)
Round) v .

Mixcolumns
: i
Addround Key

Plaintext:

48656c6c6f776f726c646f

6fefefofof

Ciphertext:

2e B8 |C2 76

18 E2 97 48

94 Cb |65 7d
57 B6 |c4

NE

/ Fault Injected Ciphertext:

32 [B8 |[C2 |76
18 E2 97 Fa
94 |Cb |B6 |7d

bd |B6 |c4

KB7

AN

https://whibox.io/contests/2019/cadidate/26.c
https://whibox.io/contests/2019/cadidate/26.c

Classification: Public

DFA on White-box AES

Whitebox implementation
link:
https://whibox.io/contests

Fault Injection

/2019/cadidate/26.c

/ SubBytes
/This fault should be 2\ P)
per column, if the e y .
injection occurs in the T.e ShiftRows
th : Ninth
8™ round this only Round T y
needs to be done for ouna N
one column, if the Mixcolumns
injection is in the 9t N T /
round each column ()
Addround Key

Qeeds to be addresseoy \

/ Fault Injection
F

ollowing is the state of the input
before the injection and after the
injection:

9 |51 |6e |52
Aa (DO |85 |93
CO |Df |56 |33
33 |46 |79 |b2

After fault injection

00 (51 |6e |52
Aa (DO |85 |93
CO |Df |56 |33

33 |46 |79 |b2

_

~

https://whibox.io/contests/2019/cadidate/26.c
https://whibox.io/contests/2019/cadidate/26.c

Classification: Public

DFA on White-box AES

Whitebox implementation

link:

https://whibox.io/contests

/2019/cadidate/26.c

/This fault should be 2\

per column, if the
injection occurs in the
8t round this only
needs to be done for
one column, if the
injection is in the 9t
round each column

Qeeds to be addresseoy

Fault Injection

-

SubBytes

—
The _
Ninth ShiftRows)
Round) v .

Mixcolumns
: i
Addround Key

.

Key scheduling

After the 10t round key is achieved,
following tool can be used to get a hold
of the original key:

* https://github.com/SideChanne

IMarvels/Stark

This is because the key scheduling
algorithm can be inversed to get the
original key.

/

/ Fault Injected Ciphertext:

32 [B8 |[C2 |76
18 E2 97 Fa
94 |Cb |B6 |7d

bd |B6 |c4

KB7

<

https://whibox.io/contests/2019/cadidate/26.c
https://whibox.io/contests/2019/cadidate/26.c
https://github.com/SideChannelMarvels/Stark
https://github.com/SideChannelMarvels/Stark

Classification: Public

DFA on White-box AES

Following is the a demo on getting the 10t round key: Faulty ciphertext after injecting on 8t

round.

import phoenixAES

with open("r8faults", "w") as f: ///7 ‘\\\

f.write("2eb8c27618e2974894cb657db757b6c4\n"
f.write("6384175e737f687139af567701b6d7eb\n"

)
) . . .
f.write("12f4c3877e1ffb8ccOfdd4bb2ed4ffas\n") Using the tool PhoenixAES in python

phoenixAES.convert_r8faults_file("r8faults", "r9faults") script, | was able to get ahold of the 10t
phoenixAES.crack_file("r9faults")

key.

o %

Last round key #N found:

6C1A6812D68A011011C9A2DODIAB2C75

Classification: Public

DFA on White-box AES

Following is the a demo on getting the 10t round key:

import phoenixAES

with open("r8faults", "w") as f:
f.write("2eb8c27618e2974894cb657db757b6c4\n")
f.write("6384175e737f687139af567701b6d7eb\n")
f.write("12f4c3877e1ffb8ccofdd4bb2ed4ffas\n")|

phoenixAES.Eonvert_r8faults_file("r8faults", "ro9faults")

phoenixAES.crack_file("r9faults")

Using the tool
stark(https://github.com/SideChannelM

arvels/Stark) on the 10t key, | was able
to obtain the original key.

o

~

)

PS C:\Users\adw8\Documents\Stark> .\aes_keyschedule.exe 6C1A6812D68A011011C9A2DBDI9AB2C75 10

: 9D797E44BOCFB850B21DD8406FEESAC4E
(@1: BDESBS51FF3427D4F415FASGF2EB19FCBC
2: 5B5834166F7FEGE27A85B818919C4CAC

: 8171A597EEQE4575948BF5656517B89(C9

: 792778F(C97293D8963A2C8ECB6B57125

: BCB8447932BAD7A1A280FB2F62EBAC3D3
: 6BAA21A243875BB86B@8E94E45B22A9D
: 1FAF7FCCS5C4824745740CD3A72F2ETAT
: 16DB238C4A9307F87DD3CAC208F212D65
: FOO36EFABASGE962C743A3CBCE628EAS
: 6C1AG812D68AC11011C9A2DBDSAB2CT75

https://github.com/SideChannelMarvels/Stark
https://github.com/SideChannelMarvels/Stark

Classification: Public

DFA on White-box AES

inpattype: | Tex Using a aes decryption tool online we can
::Z:; Xt [2EB8C27618E2974894CB657DB757B6C4 see that, the keys found is valid.
y

O Plaintext ©® Hex Autodetect: ON | OFF / \

Function: AES . Site used:
AES Encryption — Easily

Mode: ECB (electronic codebook) v encrypt or decrypt
Key:

9d797E44B9ICF850B21DD8406FEE3ACAE strings or files (online-
domain-tools.com)

(hex)

O Plaintext ® Hex

- Encrypt - Uecrypt ug K /

Decrypted text:

0000@0@0‘|48 65 6c 6C 6f 77 6f 72 6C 64 6f 6f 6f 6f 6f 6f Helloworldoooooo

[Download as a binary file] [?] Inactive

http://aes.online-domain-tools.com/
http://aes.online-domain-tools.com/
http://aes.online-domain-tools.com/
http://aes.online-domain-tools.com/

Classification: Public

Great Reads

* https://blog.quarkslab.com/differential-fault-analysis-on-white-box-
aes-implementations.html

* https://eprint.iacr.org/2015/753
* https://www.geeksforgeeks.org/advanced-encryption-standard-aes/

* https://braincoke.fr/blog/2020/08/the-aes-key-schedule-
explained/#rotword

* An introduction to white-box cryptography - Security Boulevard

https://blog.quarkslab.com/differential-fault-analysis-on-white-box-aes-implementations.html
https://blog.quarkslab.com/differential-fault-analysis-on-white-box-aes-implementations.html
https://eprint.iacr.org/2015/753
https://www.geeksforgeeks.org/advanced-encryption-standard-aes/
https://braincoke.fr/blog/2020/08/the-aes-key-schedule-explained/
https://braincoke.fr/blog/2020/08/the-aes-key-schedule-explained/
https://securityboulevard.com/2020/12/an-introduction-to-white-box-cryptography/

